skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bonnett, Keyri Moreno"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work challenges the common assumption in physical human-robot interaction (pHRI) that the movement intention of a human user can be simply modeled with dynamic equations relating forces to movements, regardless of the user. Studies in physical human-human interaction (pHHI) suggest that interaction forces carry sophisticated information that reveals motor skills and roles in the partnership and even promotes adaptation and motor learning. In this view, simple force-displacement equations often used in pHRI studies may not be sufficient. To test this, this work measured and analyzed the interaction forces (F) between two humans as the leader guided the blindfolded follower on a randomly chosen path. The actual trajectory of the follower was transformed to the velocity commands (V) that would allow a hypothetical robot follower to track the same trajectory. Then, possible analytical relationships between F and V were obtained using neural network training. Results suggest that while F helps predict V, the relationship is not straightforward, that seemingly irrelevant components of F may be important, that force-velocity relationships are unique to each human follower, and that human neural control of movement may affect the prediction of the movement intent. It is suggested that user-specific, stereotype-free controllers may more accurately decode human intent in pHRI. 
    more » « less